Problem Sheet 4 for Supervision in Week 11

1. Recall the proof in the notes of the result that there do not exist integers x, y such that $15 x^{2}-7 y^{2}=1$. (See also PJE, q. 1 on p.225.)

Use similar ideas to show that
i) There are no integral solutions to $30 x^{2}-23 y^{2}=1$,
ii) There are no integral solutions to $5 x^{2}-14 y^{2}=1$,
iii) \star If $n \equiv 1 \bmod 5$ then there are no integers x and y such that $n=30 x^{2}+22 y^{2}$.

Hint: the idea is to choose a modulus m and then to look at the equation $\bmod m$. I suggest that in (i) and (ii) you choose m so that one of the terms in the equation vanishes $\bmod m$.
2. i) Show that there are no integral solutions to $2 x^{3}+27 y^{4}=23$.
(Hint; look at this modulo 9.)
ii) Show that there are no integral solutions to $7 x^{5}+3 y^{4}=4$.
iii) \star Show that 7 never divides $a^{4}+a^{2}+2$ for $a \in \mathbb{Z}$.
3. Write out the multiplication tables for $\left(\mathbb{Z}_{6},+\right)$ and $\left(\mathbb{Z}_{6}, \times\right)$.
4. \star Write out the multiplication table for $\left(\mathbb{Z}_{9}^{*}, \times\right)$ and list the inverses of each element.
5. Find the inverses of each of the following:
(i) $[2]_{93}$,
(ii) $[5]_{93}$,
(iii) $[25]_{93}$,
(iv) $[32]_{93}$.
6. For each of the following relations on \mathbb{N}, list the ordered pairs that belong to the relation.
(i) $\mathcal{R}=\{(x, y): 2 x+y=9\}$,
(ii) $\mathcal{S}=\{(x, y): x+y<7\}$,
(iii) $\mathcal{T}=\left\{(x, y): y=x^{2}\right\}$.
7. \star For each of the following relations on the set $\{1,2,3,4\}$, indicate whether it is reflexive, symmetric or transitive. Give your reasons.
(i) $\mathcal{R}_{1}=\{(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\}$,
(ii) $\mathcal{R}_{2}=\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$,
(iii) $\mathcal{R}_{3}=\{(2,4),(4,2)\}$,
(iv) $\mathcal{R}_{4}=\{(1,1),(1,3),(2,2),(3,4),(3,3),(4,3),(3,1),(4,4)\}$,
(v) $\mathcal{R}_{5}=\{(1,1),(2,2),(3,3),(4,4)\}$,
(vi) $\mathcal{R}_{6}=\{(1,3),(1,4),(2,3),(2,4),(3,1),(3,4)\}$ 。
8. Each of the following defines a relation on \mathbb{Z}. In each case, determine if the relation is reflexive, symmetric or transitive. Give your reasons.
(i) $x \sim y$ if, and only if, $x+y$ is an odd integer,
(ii) $x \sim y$ if, and only if, $x+y$ is an even integer,
(iii) $x \sim y$ if, and only if, $x y$ is an odd integer,
(iv) $\star x \sim y$ if, and only if, $x+x y$ is an even integer.
9. Which of the following collections of subsets are partitions of $\{1,2,3,4,5,6\}$? Give your reasons.
(i) $\{1,2\},\{2,3,4\},\{4,5,6\}$,
(ii) $\{1\},\{2,3,6\},\{4\},\{5\}$,
(iii) $\{2,4,6\},\{1,3,5\}$,
(iv) $\{1,4,5\},\{2,6\}$.
10. Are the following partitions of \mathbb{R} ? Give your reasons.
(i) $\{\{x \in \mathbb{R}: x$ positive $\},\{x \in \mathbb{R}: x$ negative $\}\}$,
(ii) $\left\{T_{n}: n \in \mathbb{Z}\right\}$ where $T_{n}=\{x \in \mathbb{R}: 0 \leq x-n \leq 1\}$,
(iii) $\{\{x \in \mathbb{R}: x$ non-positive $\},\{x \in \mathbb{R}: x$ non-negative $\}\}$,
(iv) $\left\{U_{n}: n \in \mathbb{N} \cup\{0\}\right\}$ where $U_{n}=\{x \in \mathbb{R}: n \leq|x|<n+1\}$?
11. If $A=\{1,2,3,4,5\}$ and $\mathcal{R} \subseteq A \times A$ is the equivalence relation that induces the partition $A=\{1,2\} \cup\{3,4\} \cup\{5\}$, what is \mathcal{R} ?
12. If $A=\{1,2,3,4,5,6\}$ then $\mathcal{R}=\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4),(4,5),(5,4),(5,5),(6,6)\}$ is an equivalence relation.
(i) What are $[1],[2],[3],[4],[5]$ and $[6]$ under this relation?
(ii) What partition of A does \mathcal{R} induce?

