Problem Sheet 4 for Supervision in Week 11

1. Recall the proof in the notes of the result that there do **not** exist integers x, y such that $15x^2 - 7y^2 = 1$. (See also PJE, q.1 on p.225.)

Use similar ideas to show that

- i) There are no integral solutions to $30x^2 23y^2 = 1$,
- ii) There are no integral solutions to $5x^2 14y^2 = 1$,
- iii) \bigstar If $n \equiv 1 \mod 5$ then there are no integers x and y such that $n = 30x^2 + 22y^2$.

Hint: the idea is to choose a modulus m and then to look at the equation mod m. I suggest that in (i) and (ii) you choose m so that one of the terms in the equation vanishes mod m.

- 2. i) Show that there are no integral solutions to $2x^3 + 27y^4 = 23$. (Hint; look at this modulo 9.)
 - ii) Show that there are no integral solutions to $7x^5 + 3y^4 = 4$.
 - iii) \bigstar Show that 7 never divides $a^4 + a^2 + 2$ for $a \in \mathbb{Z}$.
- 3. Write out the multiplication tables for $(\mathbb{Z}_6, +)$ and (\mathbb{Z}_6, \times) .
- 4. \bigstar Write out the multiplication table for (\mathbb{Z}_9^*, \times) and list the inverses of each element.
- 5. Find the inverses of each of the following:

(i) $[2]_{93}$, (ii) $[5]_{93}$, (iii) $[25]_{93}$, (iv) $[32]_{93}$.

- 6. For each of the following relations on \mathbb{N} , list the ordered pairs that belong to the relation.
 - (i) $\mathcal{R} = \{(x, y) : 2x + y = 9\},\$
 - (ii) $S = \{(x, y) : x + y < 7\},\$
 - (iii) $\mathcal{T} = \{(x, y) : y = x^2\}.$

7. \bigstar For each of the following relations on the set $\{1, 2, 3, 4\}$, indicate whether it is reflexive, symmetric or transitive. Give your reasons.

(i)
$$\mathcal{R}_1 = \{(2,2), (2,3), (2,4), (3,2), (3,3), (3,4)\},\$$

- (ii) $\mathcal{R}_2 = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)\},\$
- (iii) $\mathcal{R}_3 = \{(2,4), (4,2)\},\$
- (iv) $\mathcal{R}_4 = \{(1,1), (1,3), (2,2), (3,4), (3,3), (4,3), (3,1), (4,4)\},\$
- (v) $\mathcal{R}_5 = \{(1,1), (2,2), (3,3), (4,4)\},\$
- (vi) $\mathcal{R}_{6} = \{(1,3), (1,4), (2,3), (2,4), (3,1), (3,4)\}.$
- 8. Each of the following defines a relation on \mathbb{Z} . In each case, determine if the relation is reflexive, symmetric or transitive. Give your reasons.
 - (i) $x \sim y$ if, and only if, x + y is an odd integer,
 - (ii) $x \sim y$ if, and only if, x + y is an even integer,
 - (iii) $x \sim y$ if, and only if, xy is an odd integer,
 - (iv) $\bigstar x \sim y$ if, and only if, x + xy is an even integer.
- 9. Which of the following collections of subsets are partitions of {1, 2, 3, 4, 5, 6}? Give your reasons.
 - (i) $\{1, 2\}, \{2, 3, 4\}, \{4, 5, 6\},\$
 - (ii) $\{1\}, \{2, 3, 6\}, \{4\}, \{5\},\$
 - $(\text{iii}) \{2,4,6\}, \{1,3,5\},\$
 - (iv) $\{1, 4, 5\}, \{2, 6\}$.
- 10. Are the following partitions of \mathbb{R} ? Give your reasons.
 - (i) $\{\{x \in \mathbb{R} : x \text{ positive}\}, \{x \in \mathbb{R} : x \text{ negative}\}\},\$
 - (ii) $\{T_n : n \in \mathbb{Z}\}$ where $T_n = \{x \in \mathbb{R} : 0 \le x n \le 1\}$,
 - (iii) $\{\{x \in \mathbb{R} : x \text{ non-positive}\}, \{x \in \mathbb{R} : x \text{ non-negative}\}\},\$
 - (iv) $\{U_n : n \in \mathbb{N} \cup \{0\}\}\$ where $U_n = \{x \in \mathbb{R} : n \le |x| < n+1\}$?

- 11. If $A = \{1, 2, 3, 4, 5\}$ and $\mathcal{R} \subseteq A \times A$ is the equivalence relation that induces the partition $A = \{1, 2\} \cup \{3, 4\} \cup \{5\}$, what is \mathcal{R} ?
- 12. If $A = \{1, 2, 3, 4, 5, 6\}$ then

 $\mathcal{R} = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4), (4,5), (5,4), (5,5), (6,6)\}$

is an equivalence relation.

- (i) What are [1], [2], [3], [4], [5] and [6] under this relation?
- (ii) What partition of A does \mathcal{R} induce?